Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin.

نویسندگان

  • S Y Wang
  • G K Wang
چکیده

Batrachotoxin (BTX) is a steroidal alkaloid that causes Na+ channels to open persistently. This toxin has been used widely as a tool for studying Na+ channel gating processes and for estimating Na+ channel density. In this report we used point mutations to identify critical residues involved in BTX binding and to examine if such mutations affect channel gating. We show that a single asparagine --> lysine substitution of the rat muscle Na+ channel alpha-subunit, mu1-N434K, renders the channel completely insensitive to 5 microM BTX when expressed in mammalian cells. This mutant channel nonetheless displays normal current kinetics with minimal changes in gating properties. Another substitution, mu1-N434A, yields a partial BTX-sensitive mutant. Unlike wild-type currents, the BTX-modified mu1-N434A currents continue to undergo fast and slow inactivation as if the inactivation processes remain functional. This finding implies that the mu1-N434 residue upon binding with BTX is critical for subsequent changes on gating; alanine at the mu1-434 position apparently diminishes the efficacy of BTX on eliminating Na+ channel inactivation. Mutants of two adjacent residues, mu1-I433K and mu1-L437K, also were found to exhibit the identical BTX-resistant phenotype. We propose that the mu1-I433, mu1-N434, and mu1-L437 residues in transmembrane segment I-S6 probably form a part of the BTX receptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local anesthetic block of batrachotoxin-resistant muscle Na+ channels.

Local anesthetics (LAs) are noncompetitive antagonists of batrachotoxin (BTX) in voltage-gated Na+ channels. The putative LA receptor has been delineated within the transmembrane segment S6 in domain IV of voltage-gated Na+ channels, whereas the putative BTX receptor is within segment S6 in domain I. In this study, we created BTX-resistant muscle Na+ channels at segment I-S6 (micro1-N434K, micr...

متن کامل

Disparate role of Na(+) channel D2-S6 residues in batrachotoxin and local anesthetic action.

Batrachotoxin (BTX) stabilizes the voltage-gated Na(+) channels in their open conformation, whereas local anesthetics (LAs) block Na(+) conductance. Site-directed mutagenesis has identified clusters of common residues at D1-S6, D3-S6, and D4-S6 segments within the alpha-subunit Na(+) channel that are critical for binding of these two types of ligands. In this report, we address whether segment ...

متن کامل

A phenylalanine residue at segment D3-S6 in Nav1.4 voltage-gated Na(+) channels is critical for pyrethroid action.

Mammalian voltage-gated Na(+) channels were less sensitive to pyrethroids than their insect counterparts by 2 to 3 orders of magnitude. Deltamethrin at 10 microM elicited weak gating changes in rat skeletal muscle alpha-subunit Na(+) channels (Nav1.4) after > 30 min of perfusion. About 10% of the peak current was maintained during the 8-ms, +50-mV pulse and, upon repolarization to -140 mV, the ...

متن کامل

Point mutations at N434 in D1-S6 of mu1 Na(+) channels modulate binding affinity and stereoselectivity of local anesthetic enantiomers.

Voltage-gated Na(+) channels are the primary targets of local anesthetics (LAs). Amino acid residues in domain 4, transmembrane segment 6 (D4-S6) form part of the LA binding site. LAs inhibit binding of the neurotoxin batrachotoxin (BTX). Parts of the BTX binding site are located in D1-S6 and D4-S6. The affinity of BTX-resistant Na(+) channels mutated in D1-S6 (mu1-N434K, mu1-N437K) toward seve...

متن کامل

Single rat muscle Na+ channel mutation confers batrachotoxin autoresistance found in poison-dart frog Phyllobates terribilis.

Poison-dart Phyllobates terribilis frogs sequester lethal amounts of steroidal alkaloid batrachotoxin (BTX) in their skin as a defense mechanism against predators. BTX targets voltage-gated Na+ channels and enables them to open persistently. How BTX autoresistance arises in such frogs remains a mystery. The BTX receptor has been delineated along the Na+ channel inner cavity, which is formed joi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 1998